Greedy Algorithm

Kuan-Yu Chen ([t % %)

2019/06/12 @ TR-310-1, NTUST

Review

For many optimization problems, using dynamic
programming to determine the best choices is overkill

— More efficient algorithms will do

A greedy algorithm always makes the choice that looks best
at the moment

— It makes a locally optimal choice in the hope that this choice
will lead to a globally optimal solution

— Greedy algorithms do not always yield optimal solutions,
but for many problems they do

Recursive Greedy Algorithm

« The recursive greedy algorithm
— It takes the start and finish times of the activities, i.e., s and f
— The index k that defines the subproblem S, it is to solve
e S, ={a; €S:s; = fi}
— The size n of the original problem
RECURSIVE-ACTIVITY-SELECTOR(S, f,k,n)

1 m=k+1

2 while m < n and s[m] < f[k] // find the first activity in S} to finish
3 m=m+ 1

4 ifm<n

5 return {a,,} U RECURSIVE-ACTIVITY-SELECTOR (s, f,m,n)

6 else return ¢

— In order to start, we add the fictitious activity ay with fy = 0, so
that subproblem S is the entire set of activities S

« The initial call, which solves the entire problem, is RECURSIVE-
ACTIVITY-SELECTORC(s, f, k,n)

do

; i RECURSIVE-ACTIVITY-SELECTOR(s, /, 0, 11) ; ;
IIEIIIIIIII:IIIIIIIII:IIIIIIIII:IIIIIIIIilIIIIIII:IIIIIIIII:IIIIIIIII:IIIIIIIII:IIIIIIIIEIIIIIIII:IIIIIIIII:IIIIIIII{III

e 02 ' ' ' ' ' ' ' ' ' ' '

2 3 5 : = < : ' RECURSIVE-ACTIVITY-SELECTOR(s, /. 1, 11)
1 1 1 [[' 1 ' ' 1 1

—————— i1

7 8 9 10 11

1
O EEEe 0 b s |[T30
T T Ty S S = 45 6

~N O] &~
W
)]

6 8 8 2 12
10 11 12 14 16

RECURSIVE ACTIVITY SELECTOR(s f 4, 11)

s 3 9 R G5 | ! RECURSIVE-ACTIVITY-SELECTOR (s, f.k.n)

m=k+1

m=m-+1

1
2

: | 4 | | a4\! v 4 ifm<n
6

while m < n and s[m] < f[k] // find the first activity in Sy to finish

return {a,,} U RECURSIVE-ACTIVITY-SELECTOR (s, f,m,n)

else return ¢

RECURSIVE-ACTIVITY- SELECTOR(S f 8, 11) |<_ g |

9 8 12 .
L e] [a | [&, o

10 2 14 e ;
] a | e | [—mwm—
L a

11 12 16 . : : : : :
o a [IR a L im=11

III]IIIIIIIlIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIII]IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII]IIIIIIIIIIIIIIIIIIII
RECURSIVE-ACTIVITY- SELECTOR(S,]‘, 1, 11)
o a | e] | a | | an |

—> time

0 | 2 3 4 5 6 7 § 9 10 11 12 13 14 15 16

r

Iterative Greedy Algorithm

We can convert our recursive procedure to an iterative one
— The procedure RECURSIVE-ACTIVITY-SELECTOR is almost

(19 . . bb]
tail recursive

— In fact, some compilers for certain programming languages

perform this task automatically

The procedure GREEDY-ACTIVITY-SELECTOR assumes that
the input activities are ordered by monotonically increasing

finish time

ilA 2 3 4 5 6 7 8 9 10 11
s 11 3 0 5 3 5 6 8 8 2 12
14 5 6 7 9 9 100 11 12 14 16
ilh 2 34 5 6 7 8 9 10 11
s 1l 3 0 5 3 5 6 8 8 2 12
14 5 6 @ 9 9 10 11 12 14 16
ilh 2 3 4 5 6 7 & 9 10 11
s 1l 3 0 5 3 5 6 8 8 2 12
14 5 6 @ 9 9 100 1 12 14 16

GREEDY-ACTIVITY-SELECTOR (s, f)

1 n = s.length

2 A= {a}

3 k=1

4 form = 2ton

5 if s[m] > f k]

6 A= AU{a,}
7 k = m

8 return A

Appendix

Direct Recursion Indirect Recursion Tail Recursion
1 function A() 1 function A() 1 function A()

2 { 2v{

51 ... TR I >
4

5 B() ; A() ;
6

7

g8 }

10 function B()
11 {

(0)TNV) o

14 AQ) ;
15 calling cycle

Property

« At each decision point, the greedy algorithm makes choice
that seems best at the moment

— This heuristic strategy does not always produce an optimal
solution

— But as we saw in the activity-selection problem, sometimes it
does!

« How can we tell whether a greedy algorithm will solve a
particular optimization problem?

— Greedy-choice property and optimal substructure are the
two key ingredients

— If we can demonstrate that the problem has these properties,
then we are well on the way to developing a greedy algorithm
for it

Two Key Ingredients

« Greedy-choice property

— We can assemble a globally optimal solution by making locally
optimal (greedy) choices
« In other words, when we are considering which choice to make,

we make the choice that looks best in the current problem,
without considering results from subproblems

 Optimal substructure

— A problem exhibits optimal substructure if an optimal solution
to the problem contains within it optimal solutions to
subproblems

DP & Greedy Algorithm.

In dynamic programming, we make a choice at each step, but
the choice usually depends on the solutions to subproblems

— Typically in a bottom-up manner

In a greedy algorithm, we make whatever choice seems best
at the moment and then solve the subproblem that remains

— The choice may depend on choices so far, but it cannot depend
on any future choices or on the solutions to subproblems

DP & Greedy Algorithm..

 Let us investigate two variants of a classical optimization
problem

— The 0-1 knapsack problem

« A thief robbing a store finds n items. The i*" item is worth i
dollars and weighs w; pounds, where i and w; are integers. The
thief wants to take as valuable a load as possible, but he can carry
at most W pounds in his knapsack, for some integer W. Which
items should he take?

— The fractional knapsack problem

« The setup is the same, but the thief can take fractions of items,
rather than having to make a binary (0-1) choice for each item

20

30 $80

——

item 3 301 $120

PR —— +
item 2 50 + 300 $120
— 201 $100 201 $100
item | 30 + + +
20 201 $100 — — —
10] $60 10] $60 10] $60

$60 $100 $120 knapsack =$220 =$160 =$180 = $240 10

In This Semester.

The Role of Algorithms in Computing 5

1.1
1.2

Algorithms 5
Algorithms as a technology 71/

Getting Started 16

2.1
2.2
2.3

Growth of Functions

3.1
3.2

Insertion sort 16
Analyzing algorithms
Designing algorithms
43
Asymptotic notation 43

Standard notations and common functions

23
29

53

Divide-and-Conquer 65

4.1
4.2
4.3
4.4
4.5
4.6

The maximum-subarray problem 68

Heapsort 151

6.1 Heaps 151

6.2 Maintaining the heap property 154
6.3 Building aheap 156

6.4 The heapsort algorithm 759

6.5 Priority queues /62

Quicksort 170

7.1 Description of quicksort /70

7.2 Performance of quicksort 774
7.3 A randomized version of quicksort
7.4 Analysis of quicksort /80

179

Sorting in Linear Time 191

8.1 Lower bounds for sorting /91
8.2 Counting sort /94

8.3 Radix sort 197

8.4 Bucket sort 200

Strassen’s algorithm for matrix multiplication 75

The substitution method for solving recurrences

The recursion-tree method for solving recurrences
93

The master method for solving recurrences
Proof of the master theorem 97

83

88

-

11

15

16

In This Semester..

Dynamic Programming 359

15.1
15.2
15.3
15.4
15.5

Rod cutting 360

Matrix-chain multiplication 370
Elements of dynamic programming 378
Longest common subsequence 390
Optimal binary search trees 397

Greedy Algorithms 414

16.1
16.2
16.3

An activity-selection problem 4175
Elements of the greedy strategy 423
Huffman codes 428

21

22

23

Data Structures for Disjoint Sets 561

21.1
21.2
21.3

Disjoint-set operations 56/
Linked-list representation of disjoint sets
Disjoint-set forests 568

Elementary Graph Algorithms 589

22.1
22.2
22.3
22.4
22.5

Representations of graphs 589
Breadth-first search 594

Depth-first search 603

Topological sort 612

Strongly connected components 615

Minimum Spanning Trees 624

23.1 Growing a minimum spanning tree 625
23.2 The algorithms of Kruskal and Prim 63/

24 Single-Source Shortest Paths 643

24.1
24.2
24.3
24.4
24.5

The Bellman-Ford algorithm 651

Single-source shortest paths in directed acyclic graphs
Dijkstra’s algorithm 658

Difference constraints and shortest paths 664

Proofs of shortest-paths properties 671

655

564 ‘

astern
‘conomy
‘dition

' THOMAS H. CORMEN
CHARLES E. LEISERSON

‘ ' RONALD L. RIVEST

CLIFFORD STEIN

(4

“\‘ \‘ b

INTRODUCTION TO

ALGORITHMS

12

http://nlp.csie.ntust.edu.tw/sws2019/

0N

2019 SPEECH SIGNAL
PROCESSING WORKSHOP

2019/06/25
B SRR A SE R AR
1181B-101E:EE

http://nlp.csie.ntust.edu.tw/sws2019/

\“é :

)

' 4 \ |
(L TAlEs i = PREETHH 15 o 2PN P25t it

" Google TaiWafls; —' ’ BT EERE AT EBLEERNEREE | Taiwan Al Labs FPE52
— ‘4 - 1 3

14

Questions?

kychen@mail.ntust.edu.tw

15

	Greedy Algorithm
	Review
	Recursive Greedy Algorithm
	Example
	Iterative Greedy Algorithm
	Appendix
	Property
	Two Key Ingredients
	DP & Greedy Algorithm.
	DP & Greedy Algorithm..
	In This Semester.
	In This Semester..
	http://nlp.csie.ntust.edu.tw/sws2019/
	http://nlp.csie.ntust.edu.tw/sws2019/
	Questions?

