

Greedy Algorithm

Kuan-Yu Chen (陳冠宇)

2019/06/12 @ TR-310-1, NTUST

Review

- For many optimization problems, using dynamic programming to determine the best choices is overkill
 - More efficient algorithms will do
- A *greedy algorithm* always makes the choice that looks best at the moment
 - It makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution
 - **Greedy algorithms do not always yield optimal solutions**, but for many problems they do

Recursive Greedy Algorithm

- The recursive greedy algorithm
 - It takes the start and finish times of the activities, i.e., s and f
 - The index k that defines the subproblem S_k it is to solve
 - $S_k = \{a_i \in S : s_i \geq f_k\}$
 - The size n of the original problem

RECURSIVE-ACTIVITY-SELECTOR(s, f, k, n)

```
1   $m = k + 1$ 
2  while  $m \leq n$  and  $s[m] < f[k]$       // find the first activity in  $S_k$  to finish
3       $m = m + 1$ 
4  if  $m \leq n$ 
5      return  $\{a_m\} \cup$  RECURSIVE-ACTIVITY-SELECTOR( $s, f, m, n$ )
6  else return  $\emptyset$ 
```

- In order to start, we add the fictitious activity a_0 with $f_0 = 0$, so that subproblem S_0 is the entire set of activities S
 - The initial call, which solves the entire problem, is RECURSIVE-ACTIVITY-SELECTOR(s, f, k, n)

k	s_k	f_k
0	—	0

a_0

1	1	4
a_0	a_1	$m = 1$

2	3	5
a_1	a_2	

3	0	6
a_1	a_3	

4	5	7
a_1	a_4	$m = 4$

5	3	9
a_1	a_5	

6	5	9
a_1	a_4	a_6

7	6	10
a_1	a_4	a_7

8	8	11
a_1	a_4	a_8

9	8	12
a_1	a_4	a_9

10	2	14
a_1	a_4	a_{10}

11	12	16
a_1	a_4	a_8

RECURSIVE-ACTIVITY-SELECTOR($s, f, 11, 11$)

a_1	a_4	a_8	a_{11}
-------	-------	-------	----------

RECURSIVE-ACTIVITY-SELECTOR($s, f, 0, 11$)

RECURSIVE-ACTIVITY-SELECTOR($s, f, 1, 11$)

RECURSIVE-ACTIVITY-SELECTOR($s, f, 4, 11$)

RECURSIVE-ACTIVITY-SELECTOR(s, f, k, n)

```

1  $m = k + 1$ 
2 while  $m \leq n$  and  $s[m] < f[k]$  // find the first activity in  $S_k$  to finish
3  $m = m + 1$ 
4 if  $m \leq n$ 
5 return  $\{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)$ 
6 else return  $\emptyset$ 

```

Iterative Greedy Algorithm

- We can convert our recursive procedure to an iterative one
 - The procedure RECURSIVE-ACTIVITY-SELECTOR is almost “tail recursive”
 - In fact, some compilers for certain programming languages perform this task automatically
- The procedure GREEDY-ACTIVITY-SELECTOR assumes that the input activities are ordered by monotonically increasing finish time

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

GREEDY-ACTIVITY-SELECTOR(s, f)

```
1   $n = s.length$ 
2   $A = \{a_1\}$ 
3   $k = 1$ 
4  for  $m = 2$  to  $n$ 
5    if  $s[m] \geq f[k]$ 
6       $A = A \cup \{a_m\}$ 
7       $k = m$ 
8  return  $A$ 
```

Appendix

Direct Recursion

```
1 function A()  
2 {  
3     ...  
4     A();  
5     ...  
6 }  
7 ...  
8 }  
9
```

A diagram showing a code snippet for direct recursion. A green curved arrow starts from the closing brace of the function body and points back to the recursive call 'A();' on line 5.

Indirect Recursion

```
1 function A()  
2 {  
3     ...  
4     B();  
5     ...  
6 }  
7 ...  
8 }  
9  
10 function B()  
11 {  
12     ...  
13     A();  
14     ...  
15 }  
16 ...  
17 }
```

A diagram showing a code snippet for indirect recursion. It consists of two functions, A and B. A red curved arrow starts from the closing brace of function A and points to the recursive call 'A();' in function B. Another red curved arrow starts from the closing brace of function B and points to the recursive call 'A();' in function A, forming a loop.

Tail Recursion

```
1 function A()  
2 {  
3     ...  
4     A();  
5 }  
6
```

A diagram showing a code snippet for tail recursion. A blue curved arrow starts from the closing brace of the function body and points to the recursive call 'A();' on line 4.

calling cycle

Property

- At each decision point, the greedy algorithm makes choice that seems best at the moment
 - This heuristic strategy does not always produce an optimal solution
 - But as we saw in the activity-selection problem, sometimes it does!
- How can we tell whether a greedy algorithm will solve a particular optimization problem?
 - **Greedy-choice property** and **optimal substructure** are the two key ingredients
 - If we can demonstrate that the problem has these properties, then we are well on the way to developing a greedy algorithm for it

Two Key Ingredients

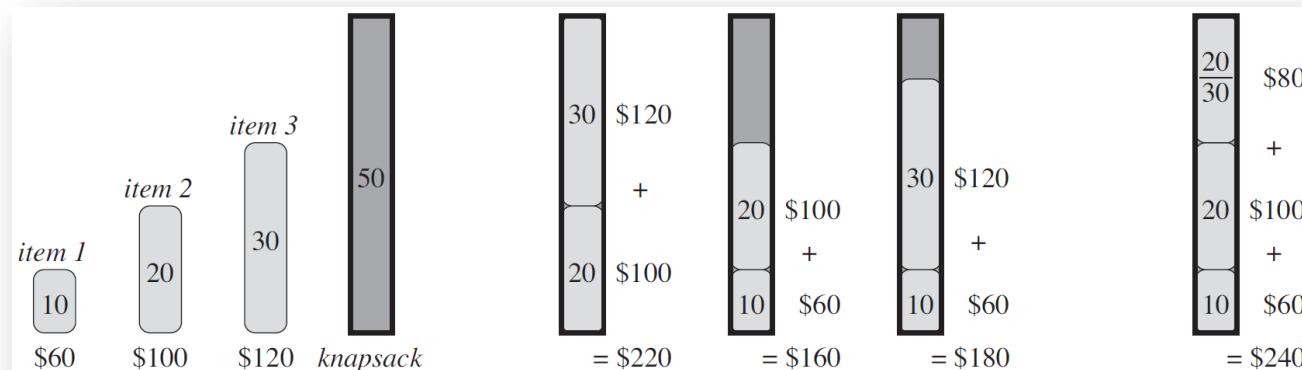
- Greedy-choice property
 - We can assemble a globally optimal solution by making locally optimal (greedy) choices
 - In other words, when we are considering which choice to make, we make the choice that looks best in the current problem, without considering results from subproblems
- Optimal substructure
 - A problem exhibits optimal substructure if an optimal solution to the problem contains within it optimal solutions to subproblems

DP & Greedy Algorithm.

- In dynamic programming, we make a choice at each step, but the choice usually depends on the solutions to subproblems
 - Typically in a bottom-up manner
- In a greedy algorithm, we make whatever choice seems best at the moment and then solve the subproblem that remains
 - The choice may depend on choices so far, but it cannot depend on any future choices or on the solutions to subproblems

DP & Greedy Algorithm..

- Let us investigate two variants of a classical optimization problem
 - The 0-1 knapsack problem**
 - A thief robbing a store finds n items. The i^{th} item is worth i dollars and weighs w_i pounds, where i and w_i are integers. The thief wants to take as valuable a load as possible, but he can carry at most W pounds in his knapsack, for some integer W . Which items should he take?
 - The fractional knapsack problem**
 - The setup is the same, but the thief can take fractions of items, rather than having to make a binary (0-1) choice for each item



In This Semester.

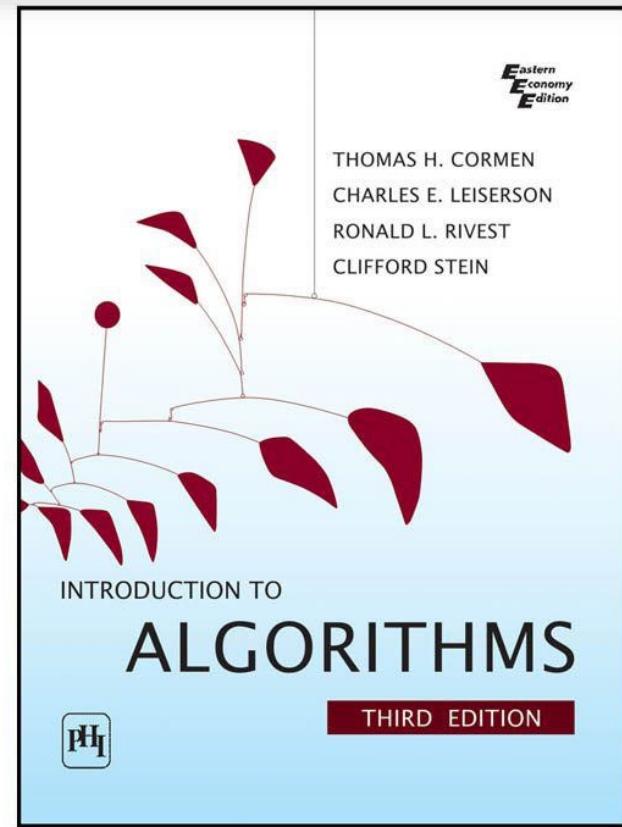
1	The Role of Algorithms in Computing	5
1.1	Algorithms	5
1.2	Algorithms as a technology	11
2	Getting Started	16
2.1	Insertion sort	16
2.2	Analyzing algorithms	23
2.3	Designing algorithms	29
3	Growth of Functions	43
3.1	Asymptotic notation	43
3.2	Standard notations and common functions	53
4	Divide-and-Conquer	65
4.1	The maximum-subarray problem	68
4.2	Strassen's algorithm for matrix multiplication	75
4.3	The substitution method for solving recurrences	83
4.4	The recursion-tree method for solving recurrences	88
4.5	The master method for solving recurrences	93
★ 4.6	Proof of the master theorem	97

6	Heapsort	151
6.1	Heaps	151
6.2	Maintaining the heap property	154
6.3	Building a heap	156
6.4	The heapsort algorithm	159
6.5	Priority queues	162
7	Quicksort	170
7.1	Description of quicksort	170
7.2	Performance of quicksort	174
7.3	A randomized version of quicksort	179
7.4	Analysis of quicksort	180
8	Sorting in Linear Time	191
8.1	Lower bounds for sorting	191
8.2	Counting sort	194
8.3	Radix sort	197
8.4	Bucket sort	200

In This Semester..

15	Dynamic Programming	359
	15.1 Rod cutting	360
	15.2 Matrix-chain multiplication	370
	15.3 Elements of dynamic programming	378
	15.4 Longest common subsequence	390
	15.5 Optimal binary search trees	397
16	Greedy Algorithms	414
	16.1 An activity-selection problem	415
	16.2 Elements of the greedy strategy	423
	16.3 Huffman codes	428
21	Data Structures for Disjoint Sets	561
	21.1 Disjoint-set operations	561
	21.2 Linked-list representation of disjoint sets	564
	21.3 Disjoint-set forests	568
22	Elementary Graph Algorithms	589
	22.1 Representations of graphs	589
	22.2 Breadth-first search	594
	22.3 Depth-first search	603
	22.4 Topological sort	612
	22.5 Strongly connected components	615
23	Minimum Spanning Trees	624
	23.1 Growing a minimum spanning tree	625
	23.2 The algorithms of Kruskal and Prim	631

24	Single-Source Shortest Paths	643
	24.1 The Bellman-Ford algorithm	651
	24.2 Single-source shortest paths in directed acyclic graphs	655
	24.3 Dijkstra's algorithm	658
	24.4 Difference constraints and shortest paths	664
	24.5 Proofs of shortest-paths properties	671



<http://nlp.csie.ntust.edu.tw/sws2019/>

簡立峰 博士
Google Taiwan 總經理

林軒田 博士
國立臺灣大學教授

劉奕汶 博士
國立清華大學教授

楊奕軒 博士
Taiwan AI Labs 科學家

Questions?

kychen@mail.ntust.edu.tw