
Greedy Algorithm

Kuan-Yu Chen (陳冠宇)

2019/06/12 @ TR-310-1, NTUST



2

Review
• For many optimization problems, using dynamic 

programming to determine the best choices is overkill
– More efficient algorithms will do

• A greedy algorithm always makes the choice that looks best 
at the moment
– It makes a locally optimal choice in the hope that this choice 

will lead to a globally optimal solution
– Greedy algorithms do not always yield optimal solutions, 

but for many problems they do



3

Recursive Greedy Algorithm
• The recursive greedy algorithm 

– It takes the start and finish times of the activities, i.e., 𝑠𝑠 and 𝑓𝑓
– The index 𝑘𝑘 that defines the subproblem 𝑆𝑆𝑘𝑘 it is to solve

• 𝑆𝑆𝑘𝑘 = {𝑎𝑎𝑖𝑖 ∈ 𝑆𝑆: 𝑠𝑠𝑖𝑖 ≥ 𝑓𝑓𝑘𝑘}
– The size 𝑛𝑛 of the original problem

– In order to start, we add the fictitious activity 𝑎𝑎0 with 𝑓𝑓0 = 0, so 
that subproblem 𝑆𝑆0 is the entire set of activities 𝑆𝑆

• The initial call, which solves the entire problem, is RECURSIVE-
ACTIVITY-SELECTOR(𝑠𝑠, 𝑓𝑓, 𝑘𝑘,𝑛𝑛)



4

Example



5

Iterative Greedy Algorithm
• We can convert our recursive procedure to an iterative one

– The procedure RECURSIVE-ACTIVITY-SELECTOR is almost 
“tail recursive”

– In fact, some compilers for certain programming languages 
perform this task automatically

• The procedure GREEDY-ACTIVITY-SELECTOR assumes that 
the input activities are ordered by monotonically increasing 
finish time



6

Appendix
Direct Recursion Indirect Recursion Tail Recursion

calling cycle



7

Property
• At each decision point, the greedy algorithm makes choice 

that seems best at the moment
– This heuristic strategy does not always produce an optimal 

solution
– But as we saw in the activity-selection problem, sometimes it 

does!

• How can we tell whether a greedy algorithm will solve a 
particular optimization problem?
– Greedy-choice property and optimal substructure are the 

two key ingredients
– If we can demonstrate that the problem has these properties, 

then we are well on the way to developing a greedy algorithm 
for it



8

Two Key Ingredients
• Greedy-choice property

– We can assemble a globally optimal solution by making locally 
optimal (greedy) choices

• In other words, when we are considering which choice to make, 
we make the choice that looks best in the current problem, 
without considering results from subproblems

• Optimal substructure
– A problem exhibits optimal substructure if an optimal solution 

to the problem contains within it optimal solutions to 
subproblems



9

DP & Greedy Algorithm.
• In dynamic programming, we make a choice at each step, but 

the choice usually depends on the solutions to subproblems
– Typically in a bottom-up manner

• In a greedy algorithm, we make whatever choice seems best 
at the moment and then solve the subproblem that remains
– The choice may depend on choices so far, but it cannot depend 

on any future choices or on the solutions to subproblems



10

DP & Greedy Algorithm..
• Let us investigate two variants of a classical optimization 

problem
– The 0-1 knapsack problem

• A thief robbing a store finds 𝑛𝑛 items. The 𝑖𝑖𝑡𝑡𝑡 item is worth 𝑖𝑖
dollars and weighs 𝑤𝑤𝑖𝑖 pounds, where 𝑖𝑖 and 𝑤𝑤𝑖𝑖 are integers. The 
thief wants to take as valuable a load as possible, but he can carry 
at most 𝑊𝑊 pounds in his knapsack, for some integer 𝑊𝑊. Which 
items should he take?

– The fractional knapsack problem
• The setup is the same, but the thief can take fractions of items, 

rather than having to make a binary (0-1) choice for each item



11

In This Semester.



12

In This Semester..



13

http://nlp.csie.ntust.edu.tw/sws2019/



14

http://nlp.csie.ntust.edu.tw/sws2019/



15

Questions?

kychen@mail.ntust.edu.tw


	Greedy Algorithm
	Review
	Recursive Greedy Algorithm
	Example
	Iterative Greedy Algorithm
	Appendix
	Property
	Two Key Ingredients
	DP & Greedy Algorithm.
	DP & Greedy Algorithm..
	In This Semester.
	In This Semester..
	http://nlp.csie.ntust.edu.tw/sws2019/
	http://nlp.csie.ntust.edu.tw/sws2019/
	Questions?

