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Review

For many optimization problems, using dynamic
programming to determine the best choices is overkill

— More efficient algorithms will do

A greedy algorithm always makes the choice that looks best
at the moment

— It makes a locally optimal choice in the hope that this choice
will lead to a globally optimal solution

— Greedy algorithms do not always yield optimal solutions,
but for many problems they do



Recursive Greedy Algorithm

« The recursive greedy algorithm
— It takes the start and finish times of the activities, i.e., s and f
— The index k that defines the subproblem S, it is to solve
e S, ={a; €S:s; = fi}
— The size n of the original problem
RECURSIVE-ACTIVITY-SELECTOR(S, f,k,n)

1 m=k+1

2 while m < n and s[m] < f[k] // find the first activity in S} to finish
3 m=m+ 1

4 ifm<n

5 return {a,,} U RECURSIVE-ACTIVITY-SELECTOR (s, f,m,n)

6 else return ¢

— In order to start, we add the fictitious activity ay with fy = 0, so
that subproblem S is the entire set of activities S

« The initial call, which solves the entire problem, is RECURSIVE-
ACTIVITY-SELECTORC(s, f, k,n)



do

; i RECURSIVE-ACTIVITY-SELECTOR(s, /, 0, 11) ; ;
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIEIIIIIIII:IIIIIIIII:IIIIIIIII:IIIIIIIIilIIIIIII:IIIIIIIII:IIIIIIIII:IIIIIIIII:IIIIIIIIEIIIIIIII:IIIIIIIII:IIIIIIII{III

e 02 ' ' ' ' ' ' ' ' ' ' '

2 3 5 : = < : ' RECURSIVE-ACTIVITY-SELECTOR(s, /. 1, 11)
1 1 1 [ [ ' 1 ' ' 1 1

—————— i1

7 8 9 10 11

1
O EEEe 0 b s |[T30
T T Ty S S = 45 6

~N O] &~
W
)]

6 8 8 2 12
10 11 12 14 16

RECURSIVE ACTIVITY SELECTOR(s f 4, 11)

s 3 9 R G5 | ! RECURSIVE-ACTIVITY-SELECTOR (s, f.k.n)

m=k+1

m=m-+1

1
2

: | 4 | | a4\! v 4 ifm<n
6

while m < n and s[m] < f[k] // find the first activity in Sy to finish

return {a,,} U RECURSIVE-ACTIVITY-SELECTOR (s, f,m,n)

else return ¢

RECURSIVE-ACTIVITY- SELECTOR(S f 8, 11) |<\_ g |

9 8 12 .
L e ] [a | [ &, o

10 2 14 e ;
] a | e | [ —mwm—
L a

11 12 16 . : : : : :
o a [ IR a L im=11

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII]IIIIIIIlIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIII]IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII]IIIIIIIIIIIIIIIIIIII
RECURSIVE-ACTIVITY- SELECTOR(S,]‘, 1, 11)
o a | e ] | a | | an |

—> time

0 | 2 3 4 5 6 7 § 9 10 11 12 13 14 15 16

r




Iterative Greedy Algorithm

We can convert our recursive procedure to an iterative one
— The procedure RECURSIVE-ACTIVITY-SELECTOR is almost

(19 . . bb]
tail recursive

— In fact, some compilers for certain programming languages

perform this task automatically

The procedure GREEDY-ACTIVITY-SELECTOR assumes that
the input activities are ordered by monotonically increasing

finish time

ilA 2 3 4 5 6 7 8 9 10 11
s 11 3 0 5 3 5 6 8 8 2 12
14 5 6 7 9 9 100 11 12 14 16
ilh 2 34 5 6 7 8 9 10 11
s 1l 3 0 5 3 5 6 8 8 2 12
14 5 6 @ 9 9 10 11 12 14 16
ilh 2 3 4 5 6 7 & 9 10 11
s 1l 3 0 5 3 5 6 8 8 2 12
14 5 6 @ 9 9 100 1 12 14 16

GREEDY-ACTIVITY-SELECTOR (s, f)

1 n = s.length

2 A= {a}

3 k=1

4 form = 2ton

5 if s[m] > f k]

6 A= AU{a,}
7 k = m

8 return A




Appendix

Direct Recursion Indirect Recursion Tail Recursion
1 function A() 1 function A() 1 function A()

2 { 2v{

51 ... TR I >
4

5 B() ; A() ;
6

7

g8 }

10 function B()
11 {

(0 )TNV ) o

14 AQ) ;
15 calling cycle




Property

« At each decision point, the greedy algorithm makes choice
that seems best at the moment

— This heuristic strategy does not always produce an optimal
solution

— But as we saw in the activity-selection problem, sometimes it
does!

« How can we tell whether a greedy algorithm will solve a
particular optimization problem?

— Greedy-choice property and optimal substructure are the
two key ingredients

— If we can demonstrate that the problem has these properties,
then we are well on the way to developing a greedy algorithm
for it



Two Key Ingredients

« Greedy-choice property

— We can assemble a globally optimal solution by making locally
optimal (greedy) choices
« In other words, when we are considering which choice to make,

we make the choice that looks best in the current problem,
without considering results from subproblems

 Optimal substructure

— A problem exhibits optimal substructure if an optimal solution
to the problem contains within it optimal solutions to
subproblems



DP & Greedy Algorithm.

In dynamic programming, we make a choice at each step, but
the choice usually depends on the solutions to subproblems

— Typically in a bottom-up manner

In a greedy algorithm, we make whatever choice seems best
at the moment and then solve the subproblem that remains

— The choice may depend on choices so far, but it cannot depend
on any future choices or on the solutions to subproblems



DP & Greedy Algorithm..

 Let us investigate two variants of a classical optimization
problem

— The 0-1 knapsack problem

« A thief robbing a store finds n items. The i*" item is worth i
dollars and weighs w; pounds, where i and w; are integers. The
thief wants to take as valuable a load as possible, but he can carry
at most W pounds in his knapsack, for some integer W. Which
items should he take?

— The fractional knapsack problem

« The setup is the same, but the thief can take fractions of items,
rather than having to make a binary (0-1) choice for each item
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Questions?

kychen@mail.ntust.edu.tw
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